Block Tridiagonal Matrices in Electronic Structure Calculations
نویسنده
چکیده
A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed, with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as well as freedom in choosing alternate Green’s function matrix blocks for transmission calculations. The new method also lends itself to calculation of the tridiagonal part of the Green’s function matrix. The effect of inaccuracies in the electrode self-energies on the transmission coefficient is analyzed and reveals that the new algorithm is potentially more stable towards such inaccuracies. 2007 Elsevier Inc. All rights reserved. PACS: 71.15. m; 02.70. c
منابع مشابه
Block tridiagonal matrix inversion and fast transmission calculations
A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed, with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as well as freedom in choosing alterna...
متن کاملParallel solution of partial symmetric eigenvalue problems from electronic structure calculations
The computation of selected eigenvalues and eigenvectors of a symmetric (Hermitian) matrix is an important subtask in many contexts, for example in electronic structure calculations. If a significant portion of the eigensystem is required then typically direct eigensolvers are used. The central three steps are: reduce the matrix to tridiagonal form, compute the eigenpairs of the tridiagonal mat...
متن کاملEigendecomposition of Block Tridiagonal Matrices
Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and...
متن کاملDeterminants of Block Tridiagonal Matrices
A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great importance in numerical analysis and physics, and to obtain general properties is of great utility. The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two sets of ma...
متن کاملBLU Factorization for Block Tridiagonal Matrices and Its Error Analysis
A block representation of the BLU factorization for block tridiagonal matrices is presented. Some properties on the factors obtained in the course of the factorization are studied. Simpler expressions for errors incurred at the process of the factorization for block tridiagonal matrices are considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007